Turmeric supplement more effective than placebo for osteoarthritis knee pain

Turmeric supplement more effective than placebo for osteoarthritis knee pain

An extract of Curcuma longa (CL), commonly known as turmeric, was found to be more effective than placebo for reducing knee pain in patients with knee osteoarthritis.

#arthritis #pain #turmeric

Wang Z, Jones G, Winzenberg T, Cai G, Laslett LL, Aitken D, Hopper I, Singh A, Jones R, Fripp J, Ding C, Antony B. Effectiveness of Curcuma longa Extract for the Treatment of Symptoms and Effusion-Synovitis of Knee Osteoarthritis : A Randomized Trial. Ann Intern Med. 2020 Sep 15. doi: 10.7326/M20-0990. Epub ahead of print. PMID: 32926799.

https://www.acpjournals.org/doi/10.7326/M20-0990

turmeric, curcumin longa, curcumin, osteoarthritis, knee pain, arthritis, pain effusion, synovitis, effusion synovitis

HSV-2 Herpes Topical Curcumin holds Promise

HSV-2 Herpes Topical Curcumin holds Promise

HSV-2 Herpes Topical Curcumin holds Promise

“Curcumin can stop the genital herpes virus, it helps in reducing the inflammation and makes it less susceptible to HIV and other STIs,” Prof Garg says.

#hsv2 #curcumin #herpes

Danielle Vitali, Puja Bagri, Jocelyn M. Wessels, Meenakshi Arora, Raghu Ganugula, Ankit Parikh, Talveer Mandur, Allison Felker, Sanjay Garg, M.N.V. Ravi Kumar, Charu Kaushic. Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa. International Journal of Molecular Sciences, 2020; 21 (1): 337 DOI: 10.3390/ijms21010337

https://www.mdpi.com/1422-0067/21/1/337

A cure or treatment for Cystic Fibrosis ? Delta-F508 defect is corrected with Curcumin


They found that the Delta-F508 defect is corrected in tissue culture and in mouse model systems by curcumin, the component that gives the spice turmeric its bright yellow color. In cultured cells, the CFTR protein moved to the surface of the cells, and in CFTR mice, the nasal and rectal epithtlia regained nearly normal function.

There has been no follow up research since 2006

*Science 304: 600-602 ( April 23 2004)

http://healthresearchreport.me/2012/07/24/researchers-show-cystic-fibrosis-defect-in-mice-corrected-with-turmeric-extract/

Turmeric extract suppresses fat tissue growth in rodent models

2009 study posted for filing

Contact: Andrea Grossman
617-636-3728
Tufts University, Health Sciences

BOSTON (May 18, 2009) Curcumin, the major polyphenol found in turmeric, appears to reduce weight gain in mice and suppress the growth of fat tissue in mice and cell models. Researchers at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (USDA HNRCA) studied mice fed high fat diets supplemented with curcumin and cell cultures incubated with curcumin.

“Weight gain is the result of the growth and expansion of fat tissue, which cannot happen unless new blood vessels form, a process known as angiogenesis.” said senior author Mohsen Meydani, DVM, PhD, director of the Vascular Biology Laboratory at the USDA HNRCA. “Based on our data, curcumin appears to suppress angiogenic activity in the fat tissue of mice fed high fat diets.”

Meydani continued, “It is important to note, we don’t know whether these results can be replicated in humans because, to our knowledge, no studies have been done.”

Turmeric is known for providing flavor to curry. One of its components is curcumin, a type of phytochemical known as a polyphenol. Research findings suggest that phytochemicals, which are the chemicals found in plants, appear to help prevent disease. As the bioactive component of turmeric, curcumin is readily absorbed for use by the body.

Meydani and colleagues studied mice fed high fat diets for 12 weeks. The high fat diet of one group was supplemented with 500 mg of curcumin/ kg diet; the other group consumed no curcumin. Both groups ate the same amount of food, indicating curcumin did not affect appetite, but mice fed the curcumin supplemented diet did not gain as much weight as mice that were not fed curcumin.

“Curcumin appeared to be responsible for total lower body fat in the group that received supplementation,” said Meydani, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts. “In those mice, we observed a suppression of microvessel density in fat tissue, a sign of less blood vessel growth and thus less expansion of fat. We also found lower blood cholesterol levels and fat in the liver of those mice. In general, angiogenesis and an accumulation of lipids in fat cells contribute to fat tissue growth.”

Writing in the May 2009 issue of the Journal of Nutrition, the authors note similar results in cell cultures. Additionally, curcumin appeared to interfere with expression of two genes, which contributed to angiogenesis progression in both cell and rodent models.

“Again, based on this data, we have no way of telling whether curcumin could prevent fat tissue growth in humans.” Meydani said. “The mechanism or mechanisms by which curcumin appears to affect fat tissue must be investigated in a randomized, clinical trial involving humans.”

 

###

 

This study was funded by a grant from the United States Department of Agriculture. Asma Ejaz, a graduate student who worked on this project received a scholarship grant from the Higher Education Commission of Pakistan.

Ejaz A, Wu, D, Kwan P, and Meydani M. Journal of Nutrition. May 2009; 139 (5): 1042-1048. “Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. 919-925.”

About Tufts University School of Nutrition

The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University is the only independent school of nutrition in the United States. The school’s eight centers, which focus on questions relating to famine, hunger, poverty, and communications, are renowned for the application of scientific research to national and international policy. For two decades, the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University has studied the relationship between good nutrition and good health in aging populations. Tufts research scientists work with federal agencies to establish the USDA Dietary Guidelines, the Dietary Reference Intakes, and other significant public policies.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Friedman School of Nutrition Science and Policy at Tufts University, or another Tufts health sciences researcher, please contact Andrea Grossman at 617-636-3728 or Christine Fennelly at 617-636-3707.

Turmeric Spices Up Virus Study – it shows promise in fighting devastating viruses

Posted: August 15, 2012 at 10:47 am, Last Updated: August 15, 2012 at 1:33 pm

By Michele McDonald

Aarthi Narayanan

Aarthi Narayanan. Photo by Evan Cantwell

The popular spice turmeric packs more than just flavor — , Mason researchers recently discovered.

Curcumin, found in turmeric, stopped the potentially deadly Rift Valley Fever virus from multiplying in infected cells, says Aarthi Narayanan, lead investigator on a new study and a research assistant professor in Mason’s National Center for Biodefense and Infectious Diseases.

Mosquito-borne Rift Valley Fever virus (RVF) is an acute, fever-causing virus that affects domestic animals such as cattle, sheep and goats, as well as humans. Results of the study were publishedthis month in the Journal of Biological Chemistry.

“Growing up in India, I was given turmeric all the time,” says Narayanan, who has spent the past 18 months working on the project. “Every time my son has a throat infection, I give (turmeric) to him.”

There’s more work to do before curcumin-based pharmaceuticals become commonplace, Narayanan emphasizes. She plans to test 10 different versions of curcumin to determine which one works the best. She also intends to apply the research to other viruses, including HIV.

Narayanan has long wanted to explore the infection-fighting properties of turmeric, in particular its key component, curcumin. “It is often not taken seriously because it’s a spice,” she says.

But science is transforming the spice from folk medicine to one that could help a patient’s body fight off a virus because it can prevent the virus from taking over healthy cells. These “broad-spectrum inhibitors” work by defeating a wide array of viruses.

Turmeric is often used as a spice in curry dishes. Photo by Sanjay Acharya from Wikipedia Commons

“Curcumin is, by its very nature, broad spectrum,” Narayanan says. “However, in the published article, we provide evidence that curcumin may interfere with how the virus manipulates the human cell to stop the cell from responding to the infection.”

Kylene Kehn-Hall, a co-investigator on the study, adds, “We are very excited about this work, as curcumin not only dramatically inhibits RVFV replication in cell culture but also demonstrates efficacy against RVFV in a mouse model.”

Narayanan and her colleagues study the connection between a virus and how it impacts the host — human or animal. Symptoms clue in the researcher about the body’s inner workings. Rift Valley Fever and Venezuelan Equine Encephalitis kick off with flu-like symptoms.

Symptoms can make it challenging for someone to recover. The body usually starts with an exaggerated inflammatory response because it doesn’t know where to start to rid itself of the virus, she says.

“Many times, the body goes above and beyond what is necessary,” Narayanan says. “And that’s not good because it’s going to influence a bunch of cells around the infection, which haven’t seen the bug. That’s one way by which disease spreads through your body. And so it is very important to control the host because a lot of times the way the host responds contributes to the disease.”

Controlling the symptoms means more than simply making the patients feels better. “You’re giving the antiviral a chance to work. Now an antiviral can go in and stop the bug. You’re no longer trying to keep the host alive and battling the bug at the same time.”

Narayanan works with a graduate student in Mason’s National Center for Biodefense and Infectious Diseases. Photo by Evan Cantwell

Once Narayanan knows how the body responds to a virus, it’s time to go after the bug itself.

She’s applying this know-how to a family of viruses called Bunyaviruses, which feature Rift Valley fever, and such alphaviruses as Venezuelan equine encephalitis and retroviruses, which notably include HIV.

She delves into uncovering why and how each virus affects the patient. “Why are some cell types more susceptible to one type of infection than another?”

HIV goes after the immune system. Bunyaviruses will infect a wide range of cells but do maximum damage to the liver. “What is it about the liver that makes it a sitting duck compared to something like the brain?” Narayanan asks.

Ultimately, curcumin could be part of drug therapies that help defeat these viruses, Narayanan says.

“I know this works. I know it works because I have seen it happen in real life,” Narayanan says. “I eat it every day. I make it a point of adding it to vegetables I cook. Every single day.”

Other Mason researchers involved in the study are Charles Bailey, Ravi Das, Irene Guendel, Lindsay Hall, Fatah Kashanchi, Svetlana Senina and Rachel Van Duyne. Several researchers from other institutions also collaborated.

Write to Michele McDonald  at mmcdon15@gmu.edu

http://newsdesk.gmu.edu/2012/08/turmeric-spices-up-virus-study/