Honeysuckle Decoction Inhibits SARS-CoV-2

In a new study in Cell Discovery, Chen-Yu Zhang’s group at Nanjing University and two other groups from Wuhan Institute of Virology and the Second Hospital of Nanjing present a novel finding that absorbed miRNA MIR2911 in honeysuckle decoction (HD) can directly target SARS-CoV-2 genes and inhibit viral replication. Drinking of HD accelerate the negative conversion of COVID-19 patients.

#mir2911 #sarcov2 #honeysuckle

Zhou, L., Zhou, Z., Jiang, X. et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov 6, 54 (2020). https://doi.org/10.1038/s41421-020-00197-3


Human nose too cold for bird flu, says new study ( H5N1 )

2009 study posted for filing

Contact: Lucy Goodchild
Imperial College London

Avian influenza viruses do not thrive in humans because the temperature inside a person’s nose is too low, according to research published today in the journal PLoS Pathogens. The authors of the study, from Imperial College London and the University of North Carolina, say this may be one of the reasons why bird flu viruses do not cause pandemics in humans easily.

There are 16 subtypes of avian influenza and some can mutate into forms that can infect humans, by swapping proteins on their surface with proteins from human influenza viruses.

Today’s study shows that normal avian influenza viruses do not spread extensively in cells at 32 degrees Celsius, the temperature inside the human nose. The researchers say this is probably because the viruses usually infect the guts of birds, which are warmer, at 40 degrees Celsius. This means that avian flu viruses that have not mutated are less likely to infect people, because the first site of infection in humans is usually the nose. If a normal avian flu virus infected a human nose, the virus would not be able to grow and spread between cells, so it would be less likely to damage cells and cause respiratory illness.

The researchers also found that when they created a mutated human influenza virus by adding a protein from the surface of an avian influenza virus, this mutated virus struggled to thrive at 32 degrees Celsius. This suggests that if a new human influenza strain evolved by adopting proteins from an avian influenza virus, this would need to undergo further changes in order to adapt to the conditions in the human body.

The researchers reached their conclusions by growing cells from the human airway and infecting them with different human and avian influenza viruses, including H5N1, to see how well the viruses grew and spread. The human influenza viruses grew equally well in the cells whether they were maintained at 37 degrees Celsius, our core body temperature, or at 32 degrees Celsius, the temperature of the nose. In contrast, the four avian influenza viruses tested grew well at 37 degrees Celsius but grew very slowly at 32 degrees Celsius.

When the researchers added proteins from an avian influenza virus to a human influenza virus, the human influenza virus also grew slowly and struggled to replicate at 32 degrees Celsius.

As viruses kill the cells they infect, the researchers also measured the extent of cell death in the model. This showed that at 32 degrees Celsius, far fewer cells died as a result of infection with avian influenza compared with human influenza, supporting the idea that the avian virus could not thrive at that temperature.

Professor Wendy Barclay, one of the authors of the study from the Division of Investigative Science at Imperial College London, said: “Bird viruses are out there all the time but they can only cause pandemics when they undergo certain changes. Our study gives vital clues about what kinds of changes would be needed in order for them to mutate and infect humans, potentially helping us to identify which viruses could lead to a pandemic.

“It would be impossible to develop vaccines against all 16 subtypes of avian flu, so we need to prioritise. By studying a range of different viruses in systems like this one we can look for warnings that they are already beginning to make the kinds of genetic changes in nature that mean they could be poised to jump into humans; animal viruses that spread well at low temperatures in these cultures could be more likely to cause the next pandemic than those which are restricted,” added Professor Barclay.




The research was funded by the Medical Research Council in the UK and by the NIH in the USA.

Research on enhanced transmissibility in H5N1 influenza: Should the moratorium end?

Public Release: 9-Oct-2012

Contact: Jim Sliwa jsliwa@asmusa.org 202-942-9297 American Society for Microbiology

How can scientists safely conduct avian flu research if the results could potentially threaten, as well as save, millions of lives? In a series of commentaries appearing on Tuesday, October 9 in mBio®, the online open-access journal of the American Society for Microbiology, prominent microbiologists and physicians argue the cases both for and against lifting a voluntary moratorium on experiments to enhance the ability of the H5N1 virus to move from mammal to mammal, so-called “gain-of-function” research, and discuss the level of biosecurity that would be appropriate for moving that research forward.

In January 2012, in response to the controversy caused by the unprecedented recommendation iof an advisory board to the government to redact methods sections  of two research studies showing how genetic changes could make H5N1 become transmissible between mammals, a group of influenza researchers agreed to a voluntary pause on any research involving highly pathogenic avian influenza H5N1 viruses leading to the generation of viruses that are more transmissible in mammals. Despite both articles eventually being published in full in May and June 2012, the research moratorium remains in place.

“The scientific community and the greater society that it serves are currently engaged in a vigorous debate on whether and how to carry out experiments that could provide essential information for preparedness against a pandemic of avian influenza. To foster discussion and to provide a venue to record the arguments for or against this moratorium, mBio® has commissioned a series of views from experts in the field,” write Arturo Casadevall of the Albert Einstein School of Medicine, editor-in-chief of mBio®; and Thomas Shenk of Princeton University, Chair of the ASM Publications Board, in an introductory editorial.

Enhancing and analyzing the transmissibility of the H5N1 virus could, on the one hand, provide insights that could help prevent or treat a future outbreak of H5N1 , or, on the other hand, it may provide a roadmap for a “bad actor” to deliberately bring about an influenza pandemic or lead to an inadvertent release of a virus with enhanced transmissibility.

Authors of the commentaries are prominent scientists, including:

  • Ron Fouchier of Erasmus MC Rotterdam in The Netherlands, Adolfo García-Sastre of the Mount Sinai School of Medicine, and Yoshihiro Kawaoka of the University of Wisconsin-Madison, lead authors of the two papers that began the controversy, argue that in the eight months since the moratorium was agreed upon, the international research community has had sufficient time to review biosafety and biosecurity measures and that H5N1 transmission studies ought to proceed. 
  • Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases contributes his voice as a representative of an organization that is a key funder of influenza research. Although Fauci acknowledges that the benefits of gain-of-function research outweigh the risks, he argues that scientists have yet to fully meet their responsibility for engaging the public in weighing these matters and making the case for proceeding. He outlines how the U.S. government plans to augment policy guidelines related to “dual use research of concern” like the experiments on enhanced influenza transmission. 
  • Marc Lipsitch and Barry R. Bloom of the Harvard School of Public Health explain why they view H5N1 with enhanced transmissibility as a “potential pandemic pathogen,”representing an even greater threat to global health than Ebola and other biosafety level 4 (BSL-4) pathogens. They argue that research on enhanced H5N1 and other potential pandemic pathogens requires a new, more stringent set of guidelines for safety, thorough public discussion of the risks and benefits involved, and global guidelines for laboratory procedures, among other measures to minimize the risk of laboratory-released infections or epidemics. 
  • Ian Lipkin of Columbia University argues that once research on enhanced strains of H5N1 continues it may be advisable to conduct the work only in BSL-3 Ag laboratories that meet additional, enhanced guidelines for handling agents with pandemic potential. Lipkin proposes that any course should be charted in consultation with and oversight from the global scientific and regulatory community. 
  • Stanley Falkow of Stanford University provides perspective on the H5N1 research moratorium based on his own experiences with a similar situation in the 1970s, when research in recombinant DNA techniques was halted while a committee of scientists and non-scientists could establish a set of guidelines for conducting the work safely. Falkow argues that research on H5N1 viruses with enhanced transmissibility should move forward once scientists work with the public to establish standardized guidelines using common sense and scientific creativity.

“This is a historic time in science,” says Casadevall. mBio® has solicited the views of experts in the field, he says, in order to provide a venue for recording the arguments for and against continuing H5N1 gain-of-function research. “Society is asking for a pause of research that is perhaps the best defense against pandemics because of concern about both biosafety and biosecurity.” With the research moratorium continuing well past the 60-days originally planned, it is time these conflicting views were aired in a public forum, he says.


mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM’s mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide